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Generation of magnetic fields by convection 
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The nonlinear hydromagnetic dynamo problem is investigated for the case 
of convection in a layer of an electrically conducting fluid heated from below. 
It is shown that two-dimensional convection rolls in conjunction with a longi- 
tudinal mean flow are capable of amplifying a magnetic field in the form of a wave 
propagating in the longitudinal direction. The action of the Lorentz forces causes 
a reduction of the amplitude of convection with the consequence that the energy 
of the magnetic field cannot grow beyond an equilibrium value which is deter- 
mined as a function of the parameters of the problem. The analysis is based on an 
expansion in powers of the longitudinal wavenumber p of the magnetic field 
and applies in the case of large values of the magnetic Prandtl number. 

1. Introduction 
The problem of the generation of magnetic fields by motions in a conducting 

fluid is known as the dynamo problem. An increasing number of theoretical 
investigations of this problem at different levels of mathematical complexity have 
appeared in recent years. Most of the work has been focused on the kinematic 
dynamo problem, which is concerned with the conditions under which growing 
solutions of the linear dynamo equation 

(i3/i3t-hV2) B = V x (U x B) (1.1) 

for the magnetic field B exist. Arbitrary solenoidal vector fields are admitted as 
velocity fields u in (1.1). A recent review of the work on this problem has been 
given by P. H. Roberts (1971). 

The shortcomings of the linear homogeneous problem (1.1) are that the ampli- 
tude of the magnetic field is not determined and that the question of the physical 
realizability of the velocity field remains unanswered. The complete dynamo 
problem consists of the equations of motion and equation (l.l),  which are 
coupled by the action of the Lorentz forces. The generation of magnetic fields 
manifests itself initially as the instability of the solution of a hydrodynamical 
problem without Lorentz forces. As the magnetic field grows the Lorentz forces 
become important and modify the velocity according to the Lenz rule in such 
a way that the amplification of the magnetic field is reduced. Asymptotically 
this action leads to an equilibrium amplitude for the magnetic field, at least in the 
sense of a time average. 
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In  view of the complexities o f  the kinematic dynamo problem the mathematical 
difficulties of the nonlinear hydromagnetic dynamo problem appear to be almost 
prohibitive. Nevertheless, considerable progress in this direction has been 
made recently by Moffatt (1970, 1972), who has solved a statistical version of the 
problem which is based on the solution of the kinematic turbulent dynamo 
problem by Steenbeck, Krause & Radler (1966). Although the equations of motion 
have been taken into account by Moffatt, only the action of random forces has 
been considered. 

The present paper describes an attempt to solve the nonlinear hydromagnetic 
dynamo problem without statistical assumptions in a physically realistic situa- 
tion. We have chosen the case of convection in a layer heated from below, which 
can be regarded as a representative of the convection flows which generate 
magnetic fields on the sun and, perhaps, in the earth. Since the most simple 
solution for convection in the form of rolls cannot generate magnetic fields, we 
shall consider the problem with an additional plane parallel shear flow along 
the axis of the convection rolls. Although this velocity field depends only on two 
co-ordinates, i t  is complex enough to yield growing solutions of (1.1). 

The analysis of the problem starts in Q 2 with the consideration of the Bous- 
sinesq equations for convection without Lorentz forces. Small amplitude 
solutionsfor the convection rolls and the additional mean flow are describedin this 
section. The linear dynamo problem based on (1.1) is formulated in Q 3. Since the 
velocity field is two-dimensional it can be assumed that the magnetic field has 
the form of a plane wave with respect to the third dimension. The corresponding 
wavenumber /? is regarded as a small parameter and an expansion of the equa- 
tions in powers of /? is used in Q 4 to obtain the solution. The main result, found in 
the order p2 equations, is that positive growth rates of the magnetic field become 
possible when the magnetic Reynolds number based on the amplitude of convec- 
tionexceeds a critical value of order 10. The major effect of the Lorentz force is the 
reduction of the amplitude of convection. This property permits a relatively 
simple calculation of the equilibrium amplitude of the magnetic field which is 
given in Q 5. The paper closes with a general discussion in Q 6. 

2. The equations of motion without Lorentz forces 
We consider a horizontal fluid layer of height d with a temperature T2 pre- 

scribed at the upper boundary. For the non-dimensional description of the prob- 
lem we introduce d, d2/v and (T, - TI) P as scales for length, time and tempera- 
ture, respectively, where v is the kinematic viscosity and P is the Prandtl 
number. The corresponding scale for the velocity field is v/d.  We shall use a 
Cartesian system of co-ordinates with the origin a t  the lower boundary and the 
x axis in the vertical direction. The vectors i ,  j and k will be used as unit vectors 
in the direction of the x, y and z co-ordinates, respectively. We assume that in 
addition to the convection generated by the gravitational instability of the static 
fluid layer a mean flow W ( x )  in the direction of the z axis is present. Since we are 
assuming stress-free boundaries 

i . v = O ,  i . V i x v = O  at x = O , i ,  (2.1) 
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the mean flow cannot be generated by a pressure gradient. In  order to generate a 
mean flow with a symmetric profile of the form 

W(X)  = Wocos2nx (2.2) 

(2.3) 

we assume that a temperature distribution of the form 

r = rox sin 27rx 

is superimposed on the linear temperature distribution produced by the tem- 
peratures at the boundaries. We shall not go into the details of the physical mech- 
anism which causes the deviation 7 from the linear profile A distribution of heat 
sources and sinks or small variations of the conductivity would be suitable 
candidates for this mechanism. To ensure that the additional distribution (2.3) 
can be regarded as a small perturbation, we shall assume that 

roL < P-1, (2.4) 

where L is a typical length scale of the system in the x direction. L will be regarded 
as a large parameter such that the limit L -+ co can be assumed as long as condition 
(2.4) is satisfied. 

The Boussinesq equations of motion without Lorentz forces for the velocity v 
and the heat equation for the deviation 8 of the temperature from the basic 
temperature distribution T = P-I (Tz/(T2 - TI)  - x} + r are 

V 2 v + i R ( O + ~ ) - v ~  = v.vv+av/at, (2.5a) 

v . v  = 0, (2.5b) 

V28+i.v = ~ ( ~ . v e + a e / a t ) .  ( 2 . 5 ~ )  

The Rayleigh number R and the Prandtl number P are defined by 

R 7gd3(T2 - Tl)/KV, P V/K, 

where y is the coefficient of thermal expansion, g is the acceleration of gravity 
and K is the thermal diffusivity. Using assumption (2.4) we have neglected the 
term v . Vr in the heat equation. The exact conditions for which the equations are 
valid will be discussed below. 

It is known that the shearing action of the mean flow exerts, in general, a stabil- 
izing influence by increasing the critical value R, of the Rayleigh number for all 
convection flows with the exception of two-dimensional rolls aligned with the 
direction of the mean flow (e.g. Gage & Reid 1968). We shall for this reasonrestrict 
attention to the latter case and assume that the velocity field v is x-independent. 

The equation of continuity (2.5b) can be eliminated by using the following 
representation for v: 

v = V x k$(x, y) + kw(x, y). 

Assuming the stationary case we obtain from (2.5) by taking the y and the z 

(2.7a) 

v;$+Ra,e= ++.ve$], (2.7b) 

v;e+ag* = qe$ .vq ,  ( 2 . 7 ~ )  

component of the curl of the equation of motion 

v; a,w - R a,T = q e + .  vw),  
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where the two-dimensional Nabla operator V, has the components (az, a,, 0) 
and the operator E is defined by 

€ $ 3  V x k$. (2 .8 )  

Equations (2 .7 )  confirm our expectation that in the limit (2 .4 )  a z-independent 
solution is possible. For the case when the amplitude of y? is small compared with 
unity equation ( 2 . 7 a )  is solved by a mean flow of the form ( 2 . 2 ) ,  w = W ( x ) ,  with 

Wo = Rr0/8n3. (2 .9 )  

The fact that equations (2 .7b ,  c) are independent of w not only establishes the 
property that the critical Rayleigh number for longitudinal convection rolls is 
independent of the mean flow, but also shows that the finite amplitude properties 
and the heat transport in particular remain unaffected by the presence of the 
shear. 

Solutions of ( 2 . 7 b , c )  are well known from earlier work on convection (e.g. 
Schliiter, Lortz & Busse 1965). The solution for stress-free boundaries and small 
amplitudes A can be written in the form 

$o = A{sin ay sin nx + O(A2Pz)), (2 .10a)  

R = R, + &P'A2(~' + a')' + . . . , (2.10 b)  

where R, = (n2+a2)3/a2 is the critical value of the Rayleigh number for dis- 
turbances with the horizontal wavenumber a. Unless special initial conditions 
are used convection with the wavenumber 

a, = 4 2  (2 .11)  

corresponding to the minimum of R, will be realized in physical situations. In  
the following we shall neglect the higher order terms of magnitude A2P2 except 
in expression ( 2 .  lob), which provides the relation between the convection 
amplitude A and the Rayleigh number. If we do not assume that Lro4 A 
a term of the order (PLr,)' has to be added on the right-hand side of (2 .10b)  if 
we assume for simplicity that the geometry of the system is symmetric with 
respect to z = 0. However, since a term of the order P2ro LA does not exist for 
reasons of symmetry the relation between the Rayleigh number and the ampli- 
tude A remains unchanged. The term of order (PT,L)~ just causes a slight change 
in the value of the constant R,. As long as condition (2 .4 )  is satisfied the analysis 
holds even for the case 

Wo z A,  (2.12) 

which requires Lro 9 A in the limit L $ 1.  The variation of the amplitude of 
convection as a function of z is of order LrOPA and can be neglected since it is 
small compared with the mean amplitude A because of condition (2.4). Finally, 
it is worth mentioning without going into details that the velocity field (2.6) with 
(2 .10a)  and (2.11) is hydrodynamically stable for sufficiently small amplitudes 
since convection rolls are stable in contrast to three-dimensional convection 
flows (Schluter et al .  1965). 
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3. The dynamo equation 
In  order to introduce a non-dimensional version of the dynamo equation (1.1) 

we shall measure the magnetic field in terms of the non-dimensional Alfv6n 
velocity 

where H denotes the dimensionless magnetic field, p is the density and p 
is the magnetic permeability. For the analysis of the dynamo equation it is con- 
venient to use d2/h as the time scale rather than d2/v as we have done in the pre- 
vious section. This means that we have to multiply the velocity field derived 
above by the factor P, = v/h in order to use it in the dimensionless dynamo equa- 
tion. P, is the magnetic Prandtl number and describes the ratio of the viscous 
diffusivity to the magnetic diffusivity. In  order to simplify the notation we shall 
indicate the multiplication by P, of variables defined in the previous section by a 
star, for example 

Solutions of (1.1) are always solenoidal when their initial values have this pro- 
perty. Even though the condition V . H = 0 does not have to be takeninto account 
it is convenient to use a general representation for H in terms of two scalar poten- 
tials as in the case of the velocity field. Before we introduce this representation 
we note that it can be assumed without losing generality that the solution of the 
dynamo equation (1.1) has an exponential dependence on z as well as on the time 
when the velocity field v is stationary and x-independent as we have assumed. 
Accordingly,we assume as a representation for the magnetic field H 

H = H,[(-j+~g)exp{c~t+i/3z}+Vx (Vx  khexp{d+ipz})], (3.2) 

where the potentials g and h are functions of x and y only. 
We have separated the x, y average of the magnetic field from the fluctuating 

part, which is described by the functions g and h. The boundary conditions dis- 
cussed below require that the mean magnetic field lies in the y direction unless p 
vanishes. The latter case, however, is not of interest t o  us since it corresponds to 
a two-dimensional field, which cannot be created by fluid motions according to 
Cowling’s theorem. Using the velocity field 

B = (pp)*vd-lH,  (3.1) 

$: = P,$O. 

v = @ o - t k W  

derived above we find by taking the average of the y component of (1.1) 

+ p2 = ip( w*(ipa,h - a,g) - a, $: v; h). (3.3a) 

The average over the x and y co-ordinates has been indicated by a bar. By taking 
the z component of the curl of (1.1) we find 

(a - v; + p2) v;g = - v;(E$$. vg) -v;a,$: - ip{.. [w*(ipv,h + eg)] 

+a, w*v;(v,~. v2$:) +E.(+:vpi)}. ( 3 . 3 ~  

The z component of (1.1) yields as the equation for h 

(a - 0% +p2)  VEh = - V,. [W*(iPV,h+ ~ g ) ]  + ay W* - E$:. VVih. (3 .3~)  
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Equations (3.3) hold for general functions W* and $$. For this reason the term 
a, W* has been included in the last equation although it vanishes for the mean 
flow (2.2) which will be used in the analysis of the equations. We shall assume that 
the boundaries are perfect electrical conductors, with the consequence that the 
normal component of the magnetic field and the tangential component of the 
current density vanish a t  the boundaries. These conditions require 

a2/g = a;,g = a,h = a;,,h = 0 at x = 0, I .  (3.4) 

It is known from the work of Elsasser (1946) and Bullard & Gellman (1954) 
that a toroidal velocity field cannot generate magnetic fields. A velocity field 
confined to parallel planes as the field described by @, can be regarded as a limiting 
case of a toroidal velocity field. It is readily seen from equations (3.3) that no 
generation of magnetic fields can take place for W = 0. Equation ( 3 . 3 ~ )  for 
0: h becomes identical to the heat equation in this case and requires that 0: h 
decays since no source term is available. After 0% hand hence h have vanished the 
same argument can be applied for g since (3.3 b )  becomes the heat equation after 
h = W = 0 has been used and the operator V i  has been removed by integration. 

The fact that convection in the form of rolls cannot generate magnetic fields 
has prompted us to add the mean flow W(x) k to the problem. A number of possi- 
bilities for two-dimensional velocity fields which lead to generation of magnetic 
fields has been discussed recently by G. 0. Roberts (1972). Yet, there are few 
examples which correspond to physically realizable situations. An example which 
comes to mind are convection rolls in a layer heated from below and rotating 
about a vertical axis. A n  inspection shows, however, that this form of convection 
still can be considered as a toroidal velocity field even though a component of 
velocity field in the direction of the axis of the rolls does exist. Since convection 
with a symmetric mean flow appears to be the next simple possibility it has 
been chosen for the purpose of the present analysis. Hydromagnetic dynamos 
with more complex convection flows can become accessible to a relatively simple 
analysis if the velocity field possesses scales of different order. A promising 
approach in this direction has been recently proposed by Childress & Soward 
(1972). 

4. Solution of the linear dynamo problem 

For this purpose we expand the dependent variables in series of powers of P: 
We shall solve equations (3.3) for the case of small but finite wavenumbers p. 

We have anticipated from the symmetry of (3.3) that even orders in /3 are associ- 
ated with real quantities while odd orders lead to purely imaginary expressions. 
After introducing the expansion (4.1) in (3.3) we find from the zeroth-order form 

a@) = 0. (4.2) 
of (3.3a) 
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This result is not unexpected since the dissipation of the mean field depends on 
its z dependence. Without a mechanism of generation the decay rate of the 
magnetic field will be proportional to /3,. A non-trivial result is found from the 
zeroth-order forms of (3.3b) and ( 3 . 3 ~ ) :  

(4.3a) 

(4.36) 

Since all variables depend only on x and y we are using for simplicity V instead of 
V, here and in the following. Before solving equations (4.3) we consider the equa- 
tions of higher order. The equations of first order do not yet answer the question 
whether generation of magnetic fields can occur. A non-vanishing value of &) 

indicates that the magnetic field is propagating in the direction of the z axis: 

(4.4) 

Since the generation mechanism is governed by terms of order p2 the functions 
9'1) and h(l) have to be determined: 

di) = - w *  a x g  (0) -8x$o * VZh(0). 

V ~ ( V ~ - E $ : . V ) ~ ( ' )  = -V2(Vh").V$;) +E.  (E$$V2h(0))+d1)V2g(0) 

+E(W*.€g(0))+axW*, (4.5a) 

(V2 - E$: . V )  V2h(l) = E g ( l ) .  V W" + V .  (Vh(0)W") + c~( l )V~h(~) .  (4.5b) 

After the solution of these equations has been obtained the real part of the growth 
rate to lowest order can be determined from 

(+2) = - 1 - w*a h(O)+ w*a ~- 
sg(l) + ax$: V2h(l). (4.6) 21 

It is the main goal of the following analysis to evaluate this expression. 
In  order to solve the linear partial differential equations (4.3) and (4.5) we use 

a Fourier representation for the variables. The trigonometric functions sin an-x 
and cosan-x are especially appropriate for this purpose since they satisfy the 
boundary conditions (3.4) for g and h, respectively. The y dependence of $o 
suggests the orthogonal systems sin may and cosmzy for the representation of 
the y dependence. After considering the symmetry of the equations we find as 
representations for g(O) and hCo) 

(4.7a) 

(4.7b) 

Since the dynamo equation is of the Mathieu type with respect to the y depen- 
dence the general representation for g(O) and h(O) has to include a factor exp {iZyy> 
on the right-hand side of ( 4 . 7 ~ ~ ~  b). From the experience with similar problems in 
the theory of convection (Busse 1967) we expect that the largest growth rates 
correspond to the case 1 = 0. Because we are restricting attention to the case 
I = 0 and to the limit /3 < 1 we cannot exclude the possibility that other magnetic 
fields can be generated at magnetic Reynolds numbers lower than those 
obtained in the present analysis. We have extracted the factor W* in the represen- 
tation (4.7b) of h@). From (4.3) and (4.5) it can be seen that in general is pro- 
portional to WtniWhile h(n) is proportional to' Wtn+I. We use this fact by extracting 
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the factor W$ and Wzz in the representations of g(1) and h(l), respectively, which 
are otherwise analogous to (4 .7) .  Because of the symmetry of the equations only 
terms with n + m even have to be considered in the summation. By multiplying 
( 4 . 3 ~ ~ )  and ( 4 . 5 a )  by 4 sinnnx cosmay ( 1  - Q8,,) and (4 .3b )  and (4 .5b)  by 4 cosnm 
sin may (1 - &,) and averaging the result we obtain the following system of 
algebraic equations: 

Anrnvpgz  = A * 4 n  81mj (4.8a) 

BnrnvphL? = EnmvpgSz, (4 .8b )  

AnmVpg$’,’ = + A  “H nmvpgS$ + Fnmvpg$ + (2n)-’ 82n.J,rn) ( 4 . 8 ~ )  

Bnmvp h$ = dl)hgA + Enmvpg$ + Knmvph:2, (4.8d) 

where the summation convention applies for subscripts occurring twice in the 
same term. Explicit expressions for the matrices with four subscripts are given in 
the appendix. The relations (4 .4)  and (4 .6 )  for a(1) and d2) can be evaluated very 
simply once the solutions of (4 .8a ,  6 )  and (4 .8c ,  d )  have been obtained: 

a(’) = W:f(A*) with f (A*)  = &rA*(n2+ a2) hi!) -ngf), (4 .9)  

a@) = -I+ Wz2b(A*) with b(A*) = -gnA*(7T2+aZ)hl:)+ngd~). (4 .10)  

In  order to solve equations (4 .8 )  numerically the infinite matrices have to be 
truncated. We implement the truncation by neglecting elements and equations 
with subscripts n, m wherever n + m > N. The truncation parameter N is allowed 
to vary and it is anticipated that the solution and in particular the values of dl) 
and a@) will not change at sufficiently large values of N if N is replaced by N + 2. 
We find that the convergence is indeed excellent for moderate values of AP,. 
For the values of A* used in plotting the figures the values of dl) and d2) change 
only in the fifth decimal place when N = 8 is replaced by N = 10. 

It would consume too much space to present the numerical results of the com- 
putations of g(O), g(I), h(*) and h(l). We shall restrict attention for this reason to the 
results for the expressions (4 .9 )  and (4 .10) .  Some further results will be presented 
later when we discuss the action of the Lorentz forces. Of primary interest is the 
function b(A*), which is shown in figure 1 .  It becomes positive when A* exceeds 
the critical value 

A: = 2.224 for a = ~ 1 4 2 .  (4 .11)  

Since A* occurs in the problem mostly in the combination aA* the critical value 
is slightly smaller for larger values of a even though the dissipative action in- 
creases with a. Depending on the magnitude of W; positive values of &) and thus 
growth of the magnetic field become possible for values of A* in the super- 
critical region. By assuming P, sufficiently large arbitrarily high values of A* 
and W$ can be obtained in spite of the assumption A ,  W, 4 1 made in the hydro- 
dynamic analysis. However, the growth rate dz) does not increase very much if 
P, is increased beyond a certain range for given values of A and W, since the 
function b(A *) decreases, being nearly proportional to A*-2 .  Computations in 
the range between A* = 30 and A* = 150 were carried out with truncation 
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FIGURE 1. The function b(A*) which describes the dependence of the growth rate d2) 
on the amplitude of convection. The solid curve and the dashed curve correspond to 
a = n/2/2 and a = n, respectively. 

N 

A* 

30 
40 
60 
80 

100 
120 
150 

r 

12 14 16 18 20 

6.6683 6.6730 
3.9481 3.9519 3.9533 - - 
1.8846 1.8776 1.8769 - - 
1.1271 1.1095 1.1046 - - 
- - 0.7333 0.7301 - 
- - 0.5264 0.5219 0.5198 
- - 0.3533 - - 

- - - 

TABLE 1. Values of b*(A) x 104 at large values of A* for a = 7r/,/2 

- 
0.5186 
0.3429 

parameters up to N = 22 and are shown in part in table 1. The results show that 
b(A*) can be represented in this range within fractions of 1 yo by 

b(A*) = 0*3658A*-1'85. (4.12) 

This decay is caused by the fact that the magnetic field is expelled from most of 
the convection layer and compressed into thin boundary layers where the 
generation process is no longer effective. The tendency towards this state is 
evident from figure 2, which shows the toroidal part of the magnetic field a t  the 
moderate value A* = 5. We conclude from this consideration that the optimal 
conditions for amplification of the magnetic field are attained at  moderate values, 
of order 10, of the magnetic Reynolds number 22, = aA*. 

The non-vanishing expression for dl) shows that the magnetic field has the 
form of a wave travelling in the direction of the mean flow at the boundary of the 
layer. The phase velocity, which is given in kst approximation by dl), increases 
quadratically with A * for small values of A * and reaches a constant value for large 
values of A* as shown in figure 3. 
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1 

X 

1 2 

?J 

FIGURE 2. The toroidal part of the magnetic field described by H = - j + eq(0) in the 
presence of convection with the amplitude A* = 5 and the wavenumber a = 7 ~ .  The field- 
lines correspond t o  constant values of the function x+g"J)(x ,  y) and are shown for incre- 
ments of 0.1. 

5 
A* 

10 

FIGURE 3. The increasing function f ( A * )  describes the dependence of the frequency ~ ( 1 )  

on the amplitude of convection. The decreasing functionp(A*) describes the work done by 
the Lorentz forces divided by Aa. The solid curve and the dashed curve correspond to  
a = TI J2 and a = T ,  respectively. 
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Some insight into the generation mechanism can be gained from considering 
the equations with the truncation parameter N = 2. If we neglect terms of 
order A*3 we find that 

- a2nA* + ...) h") - + ..., -LXA* a2A*2 

2o - (77'2 + a2)3 q p  = 1T2+a2 + . . . , ggJ = 
877(n2 + a2) 

(4.13) 

+ ... . -$A* 
hi:' = 8n(n'2 + $)3 + * * * ' 942 = 

The latter two expressions enter the relation (4.10), which deiines the function 
W*), 

(4.14) 

which shows that the decay at low values of A* is the result of the dissipation 
which is caused by the shearing action of the mean flow on the mean magnetic 
field. We note that we use the word 'mean' in two different ways. The mean mag- 
netic field represents the average over the x and y co-ordinates while the mean 
flow stands for the average over the y and x directions. 

The generation of the mean magnetic field at  finite values of A* takes place 
because of the stretching of the y component of the poloidal part of the magnetic 
field by the toroidal part of the velocity field. The stretching process causes both 
propagation of the magnetic wave and an amplification. At higher values of A* 
and at high truncation parameters N additional positive terms appear on the 
right-hand side of relations (4.13) and (4.14)' and are responsible for the fact that 
the zero of b(A*) occurs in the neighbourhood of 2 instead of 5 as could be expected 
from (4.14). Yet the main dynamo mechanism can still be described by the follow- 
ing three steps. First, a fluctuating toroidal field is created from the mean mag- 
netic field by the action of the convection velocity field. Then a fluctuating 
poloidal field is created by the mean flow. Finally, the mean field is propagated 
and amplified by the stretching of the poloidal field by the toroidal convection 
velocity field. 

5. The action of the Lorentz forces 

forces has to be taken into account by adding the term 
As the magnetic field grows to finite amplitudes the action of the Lorentz 

( V x H ) x H  (5.1) 

on the left-hand side of the equation of motion (2.5a). The modification of the 
velocity field caused by the Lorentz force will yield a relation for the amplitude 
of the magnetic field, which is represented by the as yet undetermined coefficient 
HA. It is more convenient to use the parameter E = i H 5 ,  which is a measure for 
the energy density of the magnetic field. E is exactly equal to the density of 
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magnetic field in the limit A* 3 0 if we assume that magnetic field H is given 
by the real part of expression (3.2) as we shall do in the following. The evaluation 
of (5.1) yields the following expression if we restrict attention to terms of lowest 
order in ,B and take the time average, which, of course, is identical with the x 
average : 

(V x H) x H = E( - (i + Vg(0)) VZg(0) + k[ (i + Vg")) x VV2h(0)] . k - 4V I V2?do)l ". (5 .2)  

The last term in the curly bracket does not create any fluid motion since it can 
be balanced by the pressure. The component of the Lorentz force in the z direc- 
tion tends to decrease the amplitude of the mean flow and creates in addition a 
poloidal velocity field. As will be shown below, this action of the Lorentz force 
as well as the effects caused by components of the Lorentz forces not included 
in (5.2) are of minor importance compared with the action of the toroidal com- 
ponent of the Lorentz force. 

The toroidal component of the Lorentz force leads to the additional term 

EE . (i + Vq(O)) V2g(0) (5.3) 

on the right-hand side of the equation (2 .7b)  for the convection velocity field. 
We anticipate that E is a small parameter and assume that a solution of the modi- 
fied convection equations can be obtained by a perturbation approach. Accord- 
ingly, we introduce the expansion 

$ = $O+E$,+ ..., 
R = R,+ER,+ ..., 
8 = 8,+E8,+ ..., 

(5.4) 

where the subscript 0 refers to the solution without magnetic field. Since A is a 
small parameter the nonlinear terms in the convection equation can be neglected 
at this point and we obtain as equations of first order in E 

(5 .5 )  1 V; $, + R, a, 0, = B . ((i + Vg(O)) V2g(0)) - R, a, O,, 
v;ol+a,$l., = 0. 

Since the homogeneous part of equations (5.5) is self-adjoint the inhomogeneity 
has to be orthogonal to the solution ($,, 8,) of the homogeneous equations. Thus, 
we find by multiplying the first and the second equation of (5.5) by II', and ROO,, 
respectively, and averaging the result 

E$,. (i + Vg(0)) V2g@ = 0. (5 .6 )  
a2A2 

tR1- - 

The solvability condition (5.6) determines R, in terms of the solution ( 4 . 7 ~ ) :  

(5.7) 

where (4.3a) and the definition for d(n,m) given in the appendix has been 
used. The function p(A*) ,  which is a function of A* only, has been plotted in 
figure 3. We note that it is a monotonically decreasing function. 
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Since R, is positive we find that the action of the Lorentz forces leads to an 
increase in the Rayleigh number R at a given value of the convection amplitude 
A. From the physical point of view the Rayleigh number rather than A has to be 
considered as the prescribed parameter and we have t o  conclude that the mag- 
netic energy can increase only in conjunction with a decreasing amplitude A 
according to the relation 

R = R,+Q(PA)2(~2+a2)2+RlE. (5.8) 

The decrease of A caused by an increasing E is accelerated by the fact that R, 
is a monotonically decaying function of A*. Of course, a growing value of E is 
only possible as long as A * exceeds its critical value, which depends on the con- 
stant W, and is determined by relation (4.10). When A* reaches the critical value 
(4.11) in the case of large values of W$ or the corresponding higher critical value 
for moderate values of W$ the growth rate vanishes and E attains its equilibrium 
value E,. From (5.8) a relation for E, is readily obtained: 

E + E,  = (R - R, - &(PA:/Pm)' (+ + C X ~ ) ~ ) / P ~ ~ ( A : ) .  (5.9) 

(R-R,) /R < 1 (5.10) 

The fact that the hydrodynamic analysis was based on the condition 

and that P, was assumed large justifies our anticipation that E is a small para- 
meter. Since R, is proportional to P, the basic balance (5.8) shows that the ratio 
of the magnetic energy to the gravitational energy released by convection, which 
is proportional to (PA)2, is of the same order as the ratio between magnetic 
and viscous diffusivity . Convection with stress-free boundaries is exceptional 
in that the kinetic energy does not enter the relation (5.8) at order A2. In  the case 
of rigid boundaries a term proportional to the kinetic energy would become im- 
portant in the limit of small Prandtl number and the above statement would hold 
in this case for the kinetic energy in place of the gravitational energy. The fact 
that E is of order (PA)2/Pm also justifies the neglect of the other components of 
the Lorentz force. Since the change of the amplitude of the mean flow is of the 
order E the relative change of W is small compared with relative change of A as 
E grows to its equilibrium value. The (2, t)-dependent components of the Lorentz 
force are even less important for the determination of the equilibrium value E,. 
They induce a fluctuating velocity field of the order E which influences the con- 
vection amplitude only by its nonlinear interaction, which is of order E2 and can be 
neglected for this rea.son. 

In  the above analysis the wavenumber ,8 and the details of the dynamo mechan- 
ism did not enter. At first sight this fact may appear paradoxical since the work 
done by the fluid motion in the direction opposite to the Lorentz force must be 
equal to the ohmic losses of the magnetic field which is generated by the dynamo 
mechanism. A closer inspection shows, however, that the energy transport can be 
separated from the dynamo mechanism in the limit of small wavenumbers p. 

The action of Lorentz force in the approximation used above is the same as in 
the case when convection sets in without mean flow in an initially homogeneous 
magnetic fieldin the direction perpendicular to the convection rolls. This situation 
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is described by equation (4.3~). Even though no amplification of the basic 
magnetic field is possible the energy of the magnetic field increases owing to the 
compression of field lines as shown in figure 2 .  Associated with this process are 
ohmic losses, which have to be provided for by the action of the Lorentz force on 
the convection flow. Relation (5.8) is valid in this case and determines the equili- 
brium amplitude A of convection as a function of the energy E of the initially 
given homogeneous field. The assumption of a homogeneous field is, of course, not 
physical, since any real magnetic field is subject to dissipation, at least in a fluid 
of finite conductivity. For this reason the dynamo problem requires that all com- 
ponents of the magnetic field possess a characteristic length scale as in the case 
which has been considered in this paper. Without the presence of the mean flow 
the average part of the magnetic field decays owing to its z dependence even 
though the magnetic energy can be increased by the convection flow for a limited 
time. Only if a dynamo mechanism operates which overcomes the dissipation 
associated with the z dependence can a stationary state be achieved. 

6. Concluding remarks 
The model for the generation of magnetic fields by convection which has been 

analysed in this paper has several idealized features. Though it is possible to 
generate convection in the presence of stress-free boundaries (Goldstein & 
Graham 1969) this boundary condition must be regarded as unrealistic as the 
assumption of infinitely electrically conducting boundaries. It is even less likely 
that both conditions apply at the same time. Yet, the experience of the theoretical 
work in the past has shown that virtually all features of convection can be 
described, a t  least qualitatively, in the case of free boundaries. The same holds 
for the infinitely conducting boundary in the case of the magnetic field. Both 
are natural boundary conditions which allow the continuation of the solution in 
a periodic fashion. We feel that the distinguished properties of the boundary 
conditions justify their use even if they can hardly be realized experimentally. 
We expect that the physically more realistic case of convection rolls with Poise- 
uille flow in the presence of rigid boundaries will lead qualitatively to the same 
results. 

The dynamo mechanism considered in this paper is related to  solutions of the 
kinematic dynamo problem obtained in earlier work. We have mentioned already 
the recent paper by G. 0. Roberts (1972) on magnetic fields generated by two- 
dimensional velocity fields. In  his terminology the mechanism considered in the 
present paper is a second-order dynamo. First-order dynamos are characterized, 
generally speaking, by a finite value of the average helicity, which vanishes for 
the velocity field derived in $ 2 .  

The generation of magnetic fields in the form of waves was first considered by 
Parker (1955). The details of the mechanism described in $ 4  differ considerably 
from Parker’s model. The roles of the mean and the fluctuating velocity are, in a 
sense, reversed. In  the case of the earth’s magnetic field, which motivated Parker’s 
study, the mean field is thought to be created by the shear of the differential 
rotation while in the present case the mean shear creates the fluctuating poloidal 
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field. Although our analysis does not apply to the case of the geodynamo the 
velocity field resembles the motions generated by a convective instability in 
the earth's core (Busse 1971), which are very nearly two-dimensional because of 
the dominating constraint of rotation. It is of interest to  note at  this point 
that the velocity field ( 2 . 6 )  remains unchanged if the fluid layer is rotating about 
an axis in the x direction. A modified model, in which the mean flow is directed 
in the y direction and a fluctuating velocity field in the z direction is induced by 
Eliman-layer suction, may eventually lead to a dynamo mechanism which is akin 
t o  the process generating the earth's magnetic field. 

The author is indebted to Professor Glyn Roberts for pointing out an incorrect 
assumption in an earlier version of this paper and to  Richard Clever for assistance 
in the numerical computations. The research was supported by the National 
Science Foundation under Grant GA-31247. 

Appendix 
The matrices involving $,, can be written in the form 

A m v p  = -'(n,m) 6un6p,-aC6v+s,n6p+r,,(sn-rm) ( 1 + H r +  1)6m1), 

Bnmvp = ' (v,~)[ '(n,m)'vn6p,+aC $v+s,n.6p+r,m(sn-rm) ('+S(s+ 1) an1)I, 

Hamvp = t C 6v+s,n6~+T,m[-s(n-s)n2-r(m-rr)a2 

s, r 

s, r 

837 + d(n - s, m - r )  (mn2 + sma2)/d(n,  m)] ( 1  + &(s + 1) 6,JY 
where d ( n ,  m) and a are defined by 

d ( n , m )  = n2n2+m2a2, a = $anA*. 

The variables s and r assumes the values + 1 and - 1, The summation is to be 
extended over all possible combinations. The matrices describing the inter- 
action of the magnetic field with the mean flow are given by 

Enmvp = {X &v+2s, n &pm( - sm) + av16nlm spm>, 
S 

Knmvp = -KC6s,+2s,n6p,(n(n-2s)7~~+m~a~) ( 1 + & ( ~ + 1 ) 6 n , )  
S 

+svlsn,SFm(m2a2- 772)). 

I n  order to avoid confusion we have inserted in some cases a comma between the 
subscripts of the unity matrix aVp. The variable s assumes again the values 5 1. 
The sum includes both possibilities. 
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